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Abstract 

The cumulant theory of cyclostationary time-aeries 
is applied to several types of weak-signal detection 
problems that arise in the area of signal interception, 
and to the problem of estimating the relative time- 
delay of a heavily corrupted signal that is received at 
two locations. The cumulant theory of cyclostationar- 
ity (CS) is the theory of higher-order temporal and 
spectral cumulants and moments of CS time-series. 
Specifically, the theory characterizes the additive sine 
waves present in the output of nonlinear transforma- 
tions of CS time-series. The detection and time-delay 
estimation problems that are posed are difficult to solve 
because the signal is weak, the noise and interference is 
nonstationary and non-Gaussian, and the signal does 
not exhibit second-order CS. 

1    INTRODUCTION 

The problems considered in this paper can be for- 
mulated in terms of the following two-sensor signal 
model 

M 

(1) x(t) = •(*)+"».(*)+53 •*(') 

> M 

y(t)   =   A0s(t + do) + my(t) + ^2Akik(t + dk), 
k=l 

where s(t) is the signal of interest (SOI), mx(t) and 
mv(t) are independent white Gaussian noises, the 
{i't(t)} are signals not of interest (SNOIs), {At} are 
attenuation factors, and {</*} are the relative delays 
between the signal components in x(t) and y(t). For 
example, suppose that M = 2 and the power levels 
of mx and my*are time-varying. Further, assume that 
the SOI is weak and fourth-order cyclostationary (CS) 

•This work was jointly supported by the National Science 
Foundation under grant MIP-91-12800 and the Army Research 
Office under contract DAAL03-91-C-0018. 

- but not second-order CS [8] - with period To, and 
the two interferers are second-order CS with periods 
Ti and T2 such that T\ + T2 = T0. The-first prob- 
lem is to detect the presence of the SOI given a finite 
segment of x(t). The next problem is to determine 
the parameter do given finite segments of both x(t) 
and y(t). These problems are difficult to solve using 
the stationary models of the various signals (which 
leads to radiometry [4] and generalized cross correla- 
tion methods [6]) because for detection the nonstation- 
ary noise and interference complicates the threshold 
setting, and for time-delay estimation the interference 
corrupts the relevant phase information in the cross 
spectrum. The theory of higher-order statistics is not 
helpful because it also is not signal selective: all of 
the signals contribute to higher-order cumulants for 
a stationary signal model [8]. The theory of second- 
order CS (SOCS) is also not helpful because the SOI 
has no second-order cyclic features [3]. However, these 
two tasks (and other similar tasks) can be handled by 
using the higher-order CS (HOCS) of the SOI. Before 
showing how this can be done, we first review the defi- 
nitions of higher-order moments and cumulants for CS 
time-series. 

2    THE PARAMETERS OF HOCS 

For the time-series x(t) for -co < t < oo, we define 
the nth-order lag-product time-series by 

L^rU^flxit + rj),   T^[7i...r„]t,      (2) 
i=i 

where f denotes transposition. The nth-order cyclic 
temporal moment function (CTMF) is defined by the 
limiting time average 

BZ(r)n    ±     lim  ± Lx(t,T)ne-< 

s    <I.(t,r)Be-«'Ä«>0, 

-iixat dt 

(3) 



and is simply the Fourier coefficient associated with 
the component e,2ira* in the time-series Lx(t, r)„. It 
can be seen that the CTMF is a Fourier coefficient 
of a moment function because the nth-order fraction- 
of-time probabilistic moment (the temporal moment 
function) associated with Lx(t,r)n can be expressed 
as[l] 

Rx{t,T)n = Y,Ra
x{r)nei2*at, (4) 

Or 

where the sum is over all real numbers a, called nth- 
order impure cycle frequencies, for which R"(T)„ ^ 0. 
The functions (3) and (4) exist and are well-behaved 
for appropriate models of many time-series including 
amplitude modulated, pulse-amplitude-modulated, 
and phase-shift-keyed and frequency-shift-keyed sig- 
nals [8]. 

The nth-order temporal cumulant function (TCF) 
for the set of time-series translates {x(t + r,)}"=1 is 
defined by (cf. [7] and [8]) 

C.(t,r)n =      Y, k(p)ilRx(t,TVj)nj •   (5) 

The sum in (5) is over the set P of all distinct parti- 
tions of the index set {1,2,•■•,n}, where each par- 
tition {vjb}fc=i has p elements, 1 < p < n, and 
k(p) = (—l)p_1(p— 1)!. The vector TUj consists of the 
nj lags with indices in the set t/j. The cyclic temporal 
cumulant function (CTCF) is the Fourier coefficient 
of the TCF: 

<tf(r). = <C.(t,T),. «-«**)„, (6) 

where ß is an nth-order pure cycle frequency for x(t) 
[2, 8]. Combining (4)-(6) reveals that the CTCF is 
given by the following explicit function of lower-order 
CTMFs: 

*(P)   E   I[RV(rVj)nj 
ati=/3i=i 

CS(r)n =      E 
*=Wk.i L 

where l = [1 — l]*, and a = [ai---ap]\ An nth- 
order pure cycle frequency, as first defined in [2], is 
the frequency of a finite-strength additive sine-wave 
component in Lx(t, T)„ that is free of all contributions 
from products of sine-wave components from lower- 
order lag products obtained by factoring Lx{t,r)„. 

The CTMF and the CTCF are not in general ab- 
solutely integrable due to the presence of sinusoidal 
components in T. These components formally result 
in Dirac deltas in the n-dimensional Fourier trans- 
form of the CTCF. However, a reduced-dimension 
(RD) version of the CTCF is absolutely integrable 

for many time-series of interest and, therefore, it is 
strictly Fourier transformable [8]. The RD-CTCF 
is simply the CTCF associated with the n variables 
{x(* + Tj)}j=1 with T„ = 0. We use the notation 

CS(y)„ = Cl (r)„    T = [u0], (7) 

where u is an (n-l)-dimensional vector.   The (n-1)- 
dimensional Fourier transform of (7) is denoted by 

/oo 

C!(u)ne-»*"ff du, 
■oo 

(8) 

where/' = [/!•••/n_!]t. 
Consider the n complex-demodulate time-series 

XT(t,fj) for j = l,---,n, associated with narrow 
bandpass filtered versions of x(t), where 

rt+T/2 
XT(t,f)= / x(v)e~i2*fv dv. 

Jt-T/2 
(9) 

The limit as T —> oo of the limiting time-average of 
the product of these spectral components is called the 
spectral moment function 

«.(/).= Mm (ii-X-r^/i) (10) 
\;=i 

and it can be shown that Dirac deltas (denoted by 
£(•)) can be factored out as follows: 

5«(/)n = E^(/V(/tl-«)- (11) 

However, the factor Sx(f')„ typically contains addi- 
tional Dirac deltas [8]. The spectral cumulant function 
is given by 

ft(/)n = E Kv)T[sx{fVi)ni 
3=1 

(12) 

where / is the vector of frequencies with subscripts 
in the set Uj, and it follows from (8) and (11) that 
Dirac deltas can be factored out: 

P>(/)n = E ^(/')n«5(/fl ~ /J), (13) 
ß 

where P^(f')n is called the cyclic polyspectrum (CP) 
and does not contain Dirac deltas. As first shown in 
[2], the CP is the (n-l)-dimensional Fourier transform 
of the RD-CTCF (8). This is a generalization of the 
Wiener relation between the power spectrum and au- 
tocorrelation from second-order stationary time-series 



4 
to nth-order CS time-series (cf. [1]). For strictly sta- 
tionary time-series, the only cycle frequency (pure or 
impure) is a = ß = 0. For a strictly stationary 
stochastic process, the same is true for probabilistic 
versions of the temporal moments and cumulants de- 
fined in this section, which form the basis for the the- 
ory of higher-order statistics. Such parameters are not 
signal selective, as noted in the next section, whereas 
the cyclic parameters (ß ^ 0, a ^ 0), which form the 
basis for the theory of HOCS, can be signal selective. 

3    SIGNAL SELECTIVITY 

An important advantage of exploiting CS in sig- 
nal processing tasks is that the cyclic parameters are 
signal selective in that the parameters associated with 
the SOI can be estimated from data that also contains 
noise and SNOIs; and as the amount of data becomes 
infinite, the effects on the estimate of the noise and 
interference vanish. The nature of the signal selec- 
tivity properties of higher-order cyclic moments and 
cumulants is examined next. 

Because the signals and noises in (1) are assumed 
to be mutually independent, the TCF for x(t) is given 
by the simple formula [8] 

M 

Cx(t, T)„ = C,(t, T)„ + Cm, (t, r)„ + ]T Cik(t, r)„, 
fc=i 

which implies that if ß is an nth-order pure cycle fre- 
quency for s(t), and is not for any of the other signals 
(it is unique to s(t)), then C^{r)n = C^(r)n. Simi- 
larly, if ßk is a unique nth-order pure cycle frequency 
for ik(t), then C£(r)„ = Cf(r)n. 

For moments, the signal selectivity property de- 
pends on the cycle frequencies for all of the signals 
present for all orders m < n. This can be seen by 
expressing the CTMF in terms of CTCFs [8]: 

K{r)n =      £ E n<#<^>"i 
y9fl=«'=1 

(14) 

If there is a vector ß such that at least one of its el- 
ements is a cycle frequency that is associated with a 
SNOI, then the CTMF for x(t) will not be equal to 
the CTMF for s(t). Nevertheless, it can happen that 
the contributions to the CTMF from SNOIs do not 
affect the phase of the CTMF but only its magnitude. 
For moments, then, there are two kinds of signal selec- 
tivity, depending on what information in the moment 
is considered useful (magnitude or phase). Because of 
this potentially troublesome complication, the signal- 
selectivity properties of cumulants are deemed more 

useful than those for moments. Thus, the following 
sections describe algorithms in terms of cumulants, 
but in most cases, an alternative algorithm can be 
created by simply replacing cumulants with moments. 
The usefulness of the resulting alternatives depends 
on the cycle frequencies associated with the SNOIs, 
which must be evaluated on a case-by-case basis. 

4    WEAK-SIGNAL DETECTION 

In this section, the problem of detecting the pres- 
ence of the signal s(t) in a received data set x(t) as in 
(1) is considered. There are several versions of this de- 
tection problem that are of interest. The first is called 
the general search problem, in which a data set is ana- 
lyzed to determine if there are any CS signals present. 
No information about the received data is assumed to 
be known in the general search problem. In the second 
problem, called the known-cycle-frequency problem, a 
specific pure cycle frequency/order pair (ß, no) is of 
interest, and it is desired to determine if there is a sig- 
nal present in the data corresponding to this pair. In 
the third problem, called the known-modulation prob- 
lem, the modulation format of the signal of interest is 
known, and hence the cyclic cumulants of the signal 
are known (in principle); it is desired to determine the 
presence or absence of this signal. 
The General Search Problem 
In this problem there is a maximum order N of non- 
linearity that is to be used for processing. The goal 
of the processing is to produce a list of pure cycle fre- 
quencies {ßn} for each order n < N. This list {ßn} 
for each n characterizes the detectable CS of order n 
(and only n) that is associated with x(t). Thus, these 
lists are not contaminated by entries that are due to 
lower-order sine wave interactions. To accomplish this 
task, the TCF is estimated for x(t) for each order n. 
From the estimate of the TCF of order n, the cycle 
frequencies {ßn}, which are needed for the estimate of 
the TCF for order n + 1, can be found. More explic- 
itly, the general search problem can be tackled using 
the following algorithm: 

Let n = 1 

C'x(t,r)n = Lx(t,T)n -Y,Cx{t,TVj)ni 

p 

Y(f) = FFTt{C'x(t,r)n} 

Threshold detect the bins of Y to find {/?„} 

Ö2'(T)n = (c',{t,T)ne-
ii'fi*t)o 

4(t,r)n = ^Cf»(r)„e'2^-' 
ßn 

n-»n + l; if n < N then go to 1. 



In step 4, the interval over which the average (•)„ is 
performed is determined by the amount of data avail- 
able. If any of the detected cycle frequencies are of 
particular interest, a cyclic polyspectral analysis can 
be performed from which the modulation type can 
possibly be determined [8]. 
The Known-Cycle-Frequency Problem 
In this problem, one or more of the signal's modulation 
frequencies, such as a symbol rate or carrier frequency, 
is assumed to be known, but the exact functional form 
of the CTCF is unknown. The environment is still 
assumed to be unknown and, therefore, the general 
search algorithm is still of interest. However, it can 
be improved for the known-cycle-frequency problem 
by combining it with a least-squares estimation tech- 
nique. Let (/?, no) be the cycle frequency/order pair of 
interest. Use the general search algorithm up to order 
«o — 1- Form C'x(t,T)„0, and use a least-squares esti- 
mator to detect the presence of the signal of interest 
using the statistic 

Y = (w'c'x(t,T)no e-«2^)o = w<Cß
x(r)no, 

where 

C'x(t,r)n0 = [cx(t,Ti)no---C'x(t,TK)no}\ 

Cß
x{r)na = [cl{Tl)no...Cx*{TK)no]\ 

and where w is the least-squares weight vector 

w = arg min (jw^c'x(t,r)no - e''2^|^  .     (15) 

The solution to (15) is w = R~
1
CX(T)„0, where 

R=(c'x(t,r)noc'x(t,r)l)o, 

in which H denotes conjugate transpose.  Thus, the 
detection statistic is 

Y = Cß
x(r)lR-1Cß

x(T)no, 

which is obtained by forming the particular linear 

combination of data sets C (t, Ti)„0, • • •, C (t, TK)n0 

that optimally combines the regenerated sine waves 
with frequency ß present in each set, and then cor- 
relates this composite regenerated sine wave with the 
stored sine wave e'2*'". 
The Known-Modulation Problem 
In this problem, it is desired to determine if a signal 
with known modulation type is present. In particular, 
the CTCF of s(t) for n = no and pure cycle frequency 
ß is known. The general search algorithm can be used 

to remove all lower-order sine waves up to order no — 1. 
Then, from C'x(t,r)„0 the CTCF estimate C^T(u)„0 

for cycle frequency ß can be determined by computing 
the Fourier coefficient as in (6). The proposed detec- 
tion statistic is 

= /°° C2T(u)noC!(uyno 
J—oo 

du. 

The primary justification for this particular statistic 
is that when no signal is present with nth-order pure 
cycle frequency ß, then C%T(u)no -► 0, which implies 
that Y —* 0; when the signal of interest is present, 
then 

'* du. (16) 
/oo 

•oo 

Thus, y is an asymptotically noise-free statistic on 
both the signal-present and signal-absent hypotheses. 
Furthermore, the integral (16) is finite [8]. Hence, this 
statistic is the natural generalization of the single cy- 
cle detector that exploits SOCS [4]. 

The detection statistic Y can be generalized to in- 
clude only a portion of «-space, denoted by G C Rn°, 

JG 
du. 

Choices for G might include those values of u for which 
the RD-CTCF Cß(u)„0 is particularly large, or for 
which the coefficient of variation (variance divided by 
squared mean) of the estimator C^T(u)„0 of the RD- 
CTCF is particularly small [8]. 

5    TIME-DELAY ESTIMATION 

Conventional approaches to the problem of esti- 
mating the time-delay (or time difference of arrival 
(TDOA)) between signal components in data from 
two sensors can be collectively referred to as gener- 
alized cross correlation (GCC) methods [6]. In the 
GCC methods, filtered versions of the sensor outputs 
x(t) and y(t) are cross correlated, and the estimate 
of do is taken to be the location of the peak in the 
cross-correlation estimate. These methods suffer when 
interferers are present (M > 1 in (1)), because each 
interferer contributes a peak of its own to the cross cor- 
relation function. This causes two problems. The first 
is a resolution problem which, to be solved, requires 
that the differences in the TDOAs for each of the sig- 
nals be greater than the widths of the cross correla- 
tion functions so that the peaks can be resolved. The 
second problem is that it is difficult to correctly as- 
sociate each peak with its corresponding signal. Both 
of these problems arise because the GCC methods are 
not signal selective; they produce TDOA peaks for 



all the signals in the received data unless they are 
spectrally disjoint and can, therefore, be separated 
by filtering. Signal-selective methods that exploit the 
SOCS of the desired signal, which is assumed to be 
unique to that signal, are studied in [5]. These meth- 
ods have been shown to outperform the GCC methods, 
and have been shown to produce unbiased TDOA esti- 
mates with variance that is smaller than the Cramer- 
Rao lower bound on the variance of TDOA estimators 
that are based on the assumption that the signal and 
its environment are stationary. However, these meth- 
ods fail when there is no SOCS to exploit. In this case, 
the theory of HOCS can be used to develop signal- 
selective TDOA estimators. Following the approach 
in [5] for SOCS, the methodology considered here for 
HOCS is based on least-squares estimation. The fol- 
lowing two examples illustrate the methodology [8]. 

Define   a   cross   cumulant   between   n-1   time- 
translates of x(t) and one translate of y(t) as follows 

CXy(t,r)„ = Cumulant {y(t + r„),x(t + r,)}"=1 

The Fourier coefficient of this cross cumulant for the 
cycle frequency ß for the signal model (1) (assuming 
that the noise and interference do not exhibit nth- 
order CS with pure cycle frequency ß) is given by 

Cß
Xy{r)n    ±    (CXv(t,T)ne-a'^)Q 

=   AoCS(r + Sndo)n, 

where Sn is the unit vector along the nth coordinate. 
It is easy to show that the following relations involving 
RD-CTCFs hold: 

<?£,(«)„ = A*C?(u-ido)„eW°; CS(«)„ = CS («)„. 

This suggests a least-squares fit of a measurement of 
Cxy to a measurement of C% over a region G of u- 
space of interest: 

i2xßd du, min f !<?£„»„ - ACST(u - id)„e«'2 
A>d JG' 

which leads to the following estimator of the delay do: 

d0 = arg max ft f CgT(u)nC§.„(u + idy„ei2^d du. 
d      JG 

This estimator is a higher-order generalization of the 
SPECtral Coherence Alignment algorithm for TDOA 
estimation [5], which exploits SOCS, and has been 
shown to possess several optimality properties. 

As an alternative, cross-sensor measurements can 
be avoided entirely by noting that 

#(«)„ = ASCS(«)„ew°; C2(u)n = Cf («)„, 

which suggests the following least-squares approach: 

do = arg min / |<?&.(u)n - ABd£T(u)ne""M|2 du. 
A<d JG 

The estimator for do is given explicitly by 

do = ^JGCeT(u)nceT(uy„du,      (17) 

which is a higher-order generalization of the second- 
order Cyclic Phase Difference algorithm for TDOA es- 
timation without cross-sensor measurements [5]. 

6    CONCLUSIONS 

The higher-order cumulants and moments of cyclo- 
stationary time-series can be used to perform diffi- 
cult detection and estimation tasks. The basic signal- 
selectivity properties of cumulants yield estimators 
that are tolerant to noise and cyclostationary inter- 
ference. This admittedly terse presentation will be 
expanded on in a forthcoming journal paper (see [8]). 
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